1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
//! Using this library, you declaratively define your state machines as as set
//! of _states_, connected via _transitions_, triggered by _events_. You can
//! query the current state of the machine, or pattern match against all
//! possible machine variants.
//!
//! The implementation ensures a zero-sized abstraction that uses Rust's
//! type-system and ownership model to guarantee valid transitions between
//! states using events, and makes sure previous states are no longer accessible
//! after transitioning away to another state. Rust validates correct usage of
//! the state machine at compile-time, no runtime checking occurs when using the
//! library.
//!
//! The library exposes the `sm!` macro, which allows you to declaratively build
//! the state machine.
//!
//! ## Examples
//!
//! ### Quick Example
//!
//! ```rust
//! extern crate sm;
//! use sm::sm;
//!
//! sm! {
//!     Lock {
//!         InitialStates { Locked, Unlocked }
//!
//!         TurnKey {
//!             Locked => Unlocked
//!             Unlocked => Locked
//!         }
//!
//!         Break {
//!             Locked, Unlocked => Broken
//!         }
//!     }
//! }
//!
//! fn main() {
//!     use Lock::*;
//!     let lock = Machine::new(Locked);
//!     let lock = lock.transition(TurnKey);
//!
//!     assert_eq!(lock.state(), Unlocked);
//!     assert_eq!(lock.trigger().unwrap(), TurnKey);
//! }
//! ```
//!
//! ### Descriptive Example
//!
//! The below example explains step-by-step how to create a new state machine
//! using the provided macro, and then how to use the created machine in your
//! code by querying states, and transitioning between states by triggering
//! events.
//!
//! #### Declaring a new State Machine
//!
//! First, we import the macro from the crate:
//!
//! ```rust
//! extern crate sm;
//! use sm::sm;
//! ```
//!
//! Next, we initiate the macro declaration:
//!
//! ```rust
//! # extern crate sm;
//! # use sm::sm;
//! sm! {
//! #   Lock {
//! #       InitialStates { Locked, Unlocked }
//! #   }
//! # }
//! #
//! # fn main() {}
//! ```
//!
//! Then, provide a name for the machine, and declare a list of allowed initial
//! states:
//!
//! ```rust
//! # extern crate sm;
//! # use sm::sm;
//! # sm! {
//!     Lock {
//!         InitialStates { Locked, Unlocked }
//! #   }
//! # }
//! #
//! # fn main() {}
//! ```
//!
//! Finally, we declare one or more events and the associated transitions:
//!
//! ```rust
//! # extern crate sm;
//! # use sm::sm;
//! # sm! {
//! #   Lock {
//! #       InitialStates { Locked, Unlocked }
//! #
//!         TurnKey {
//!             Locked => Unlocked
//!             Unlocked => Locked
//!         }
//!
//!         Break {
//!             Locked, Unlocked => Broken
//!         }
//!     }
//! }
//! #
//! # fn main() {}
//! ```
//!
//! And we're done. We've defined our state machine structure, and the valid
//! transitions, and can now use this state machine in our code.
//!
//! #### Using your State Machine
//!
//! You can initialise the machine as follows:
//!
//! ```rust
//! # extern crate sm;
//! # use sm::sm;
//! # sm! {
//! #   Lock {
//! #       InitialStates { Locked, Unlocked }
//! #
//! #       TurnKey {
//! #           Locked => Unlocked
//! #           Unlocked => Locked
//! #       }
//! #
//! #       Break {
//! #           Locked, Unlocked => Broken
//! #       }
//! #   }
//! # }
//! #
//! # fn main() {
//! let sm = Lock::Machine::new(Lock::Locked);
//! # }
//! ```
//!
//! We can make this a bit less verbose by bringing our machine into scope:
//!
//! ```rust
//! # extern crate sm;
//! # use sm::sm;
//! # sm! {
//! #   Lock {
//! #       InitialStates { Locked, Unlocked }
//! #
//! #       TurnKey {
//! #           Locked => Unlocked
//! #           Unlocked => Locked
//! #       }
//! #
//! #       Break {
//! #           Locked, Unlocked => Broken
//! #       }
//! #   }
//! # }
//! #
//! # fn main() {
//! use Lock::*;
//! let sm = Machine::new(Locked);
//! # }
//! ```
//!
//! We've initialised our machine in the `Locked` state. You can get the current
//! state of the machine by sending the `state()` method to the machine:
//!
//! ```rust
//! # extern crate sm;
//! # use sm::sm;
//! # sm! {
//! #   Lock {
//! #       InitialStates { Locked, Unlocked }
//! #
//! #       TurnKey {
//! #           Locked => Unlocked
//! #           Unlocked => Locked
//! #       }
//! #
//! #       Break {
//! #           Locked, Unlocked => Broken
//! #       }
//! #   }
//! # }
//! #
//! # fn main() {
//! # use Lock::*;
//! # let sm = Machine::new(Locked);
//! let state = sm.state();
//! assert_eq!(state, Locked);
//! # }
//! ```
//!
//! While you _can_ use `sm.state()` with conditional branching to execute your
//! code based on the current state, this can be a bit tedious, it's less
//! idiomatic, and it prevents you from using one extra compile-time validation
//! tool in our toolbox: using Rust's exhaustive pattern matching requirement to
//! ensure you've covered all possible state variants in your business logic.
//!
//! While `sm.state()` returns the state as a unit-like struct (which itself is
//! a [ZST], or Zero Sized Type), you can use the `sm.as_enum()` method to get
//! the state machine back as an enum variant.
//!
//! [ZST]:
//! https://doc.rust-lang.org/nomicon/exotic-sizes.html#zero-sized-types-zsts
//!
//! Using the enum variant and pattern matching, you are able to do the
//! following:
//!
//! ```rust
//! # extern crate sm;
//! # use sm::sm;
//! # sm! {
//! #   Lock {
//! #       InitialStates { Locked, Unlocked }
//! #
//! #       TurnKey {
//! #           Locked => Unlocked
//! #           Unlocked => Locked
//! #       }
//! #
//! #       Break {
//! #           Locked, Unlocked => Broken
//! #       }
//! #   }
//! # }
//! #
//! # fn main() {
//! # use Lock::*;
//! # let sm = Machine::new(Locked);
//! use Lock::Variant::*;
//!
//! match sm.as_enum() {
//!     InitialLocked(m) => {
//!         assert_eq!(m.state(), Locked);
//!         assert!(m.trigger().is_none());
//!     }
//!     InitialUnlocked(m) => {
//!         assert_eq!(m.state(), Unlocked);
//!         assert!(m.trigger().is_none());
//!     }
//!     LockedByTurnKey(m) => {
//!         assert_eq!(m.state(), Locked);
//!         assert_eq!(m.trigger().unwrap(), TurnKey);
//!     }
//!     UnlockedByTurnKey(m) => {
//!         assert_eq!(m.state(), Unlocked);
//!         assert_eq!(m.trigger().unwrap(), TurnKey);
//!     }
//!     BrokenByBreak(m) => {
//!         assert_eq!(m.state(), Broken);
//!         assert_eq!(m.trigger().unwrap(), Break);
//!     }
//! }
//! # }
//! ```
//!
//! Each state configured with `InitialStates` has its own variant named
//! `Initial<State>`. Next to those, each valid state + event combination also
//! has its own variant, named `<state>By<event>`.
//!
//! The compiler won't be satisfied until you've either exhausted all possible
//! enum variants, or you explicitly opt-out of matching all variants, either
//! way, you can be much more confident that your code won't break if you add a
//! new state down the road, but forget to add it to a pattern match somewhere
//! deep inside your code-base.
//!
//! To transition this machine to the `Unlocked` state, we send the `transition`
//! method, using the `TurnKey` event:
//!
//! ```rust
//! # extern crate sm;
//! # use sm::sm;
//! # sm! {
//! #   Lock {
//! #       InitialStates { Locked, Unlocked }
//! #
//! #       TurnKey {
//! #           Locked => Unlocked
//! #           Unlocked => Locked
//! #       }
//! #
//! #       Break {
//! #           Locked, Unlocked => Broken
//! #       }
//! #   }
//! # }
//! #
//! # fn main() {
//! # use Lock::*;
//! # let sm = Machine::new(Locked);
//! let sm = sm.transition(TurnKey);
//! assert_eq!(sm.state(), Unlocked);
//! # }
//! ```
//!
//! Because multiple events can lead to a single state, it's also important to
//! be able to determine what event caused the machine to transition to the
//! current state. We can ask this information using the `trigger()` method:
//!
//! ```rust
//! # extern crate sm;
//! # use sm::sm;
//! # sm! {
//! #   Lock {
//! #       InitialStates { Locked, Unlocked }
//! #
//! #       TurnKey {
//! #           Locked => Unlocked
//! #           Unlocked => Locked
//! #       }
//! #
//! #       Break {
//! #           Locked, Unlocked => Broken
//! #       }
//! #   }
//! # }
//! #
//! # fn main() {
//! # use Lock::*;
//! # let sm = Machine::new(Locked);
//! # let sm = sm.transition(TurnKey);
//! # assert_eq!(sm.state(), Unlocked);
//! assert_eq!(sm.trigger().unwrap(), TurnKey);
//! # }
//! ```
//!
//! The `trigger()` method returns `None` if no state transition has taken place
//! yet (ie. the machine is still in its initial state), and `Some(Event)` if
//! one or more transitions have taken place.
//!
//! #### A word about Type-Safety and Ownership
//!
//! It's important to realise that we've _consumed_ the original machine in the
//! above example when we transitioned the machine to a different state, and got
//! a newly initialised machine back in the `Unlocked` state.
//!
//! This allows us to safely use the machine without having to worry about
//! multiple readers using the machine in different states.
//!
//! All these checks are applied on compile-time, so the following example would
//! fail to compile:
//!
//! ```rust,compile_fail
//! # extern crate sm;
//! # use sm::sm;
//! # sm! {
//! #   Lock {
//! #       InitialStates { Locked, Unlocked }
//! #
//! #       TurnKey {
//! #           Locked => Unlocked
//! #           Unlocked => Locked
//! #       }
//! #
//! #       Break {
//! #           Locked, Unlocked => Broken
//! #       }
//! #   }
//! # }
//! #
//! # fn main() {
//! # use Lock::*;
//! # let sm = Machine::new(Locked);
//! let sm2 = sm.transition(TurnKey);
//! assert_eq!(sm.state(), Locked);
//! # }
//! ```
//!
//! This fails with the following compilation error:
//!
//! ```text
//! error[E0382]: use of moved value: `sm`
//!   --> src/lib.rs:315:12
//!    |
//! 22 | let sm2 = sm.transition(TurnKey);
//!    |           -- value moved here
//! 23 | assert_eq!(sm.state(), Locked);
//!    |            ^^ value used here after move
//!    |
//!    = note: move occurs because `sm` has type `Lock::Machine<Lock::Locked>`, which does not implement the `Copy` trait
//! ```
//!
//! Similarly, we cannot execute undefined transitions, these are also caught by
//! the compiler:
//!
//! ```rust,compile_fail
//! # extern crate sm;
//! # use sm::sm;
//! # sm! {
//! #   Lock {
//! #       InitialStates { Locked, Unlocked }
//! #
//! #       TurnKey {
//! #           Locked => Unlocked
//! #           Unlocked => Locked
//! #       }
//! #
//! #       Break {
//! #           Locked, Unlocked => Broken
//! #       }
//! #   }
//! # }
//! #
//! # fn main() {
//! # use Lock::*;
//! # let sm = Machine::new(Locked);
//! # let sm = sm.transition(Break);
//! assert_eq!(sm.state(), Broken);
//!
//! let sm = sm.transition(TurnKey);
//! # }
//! ```
//!
//! This fails with the following compilation error:
//!
//! ```text
//! error[E0599]: no method named `transition` found for type `Lock::Machine<Lock::Broken>` in the current scope
//!   --> src/lib.rs:360:13
//!    |
//! 4  | sm! {
//!    | --- method `transition` not found for this
//! ...
//! 25 | let sm = sm.transition(TurnKey);
//!    |             ^^^^^^^^^^
//!    |
//!    = help: items from traits can only be used if the trait is implemented and in scope
//!    = note: the following trait defines an item `transition`, perhaps you need to implement it:
//!            candidate #1: `sm::Transition`
//! ```
//!
//! The error message is not great (and can potentially be improved in the
//! future), but any error telling you `transition` is not implemented, or the
//! passed in event type is invalid is an indication that you are trying to
//! execute an illegal state transition.
//!
//! Finally, we are confined to initialising a new machine in only the states
//! that we defined in `InitialStates`:
//!
//! ```rust,compile_fail
//! # extern crate sm;
//! # use sm::sm;
//! # sm! {
//! #   Lock {
//! #       InitialStates { Locked, Unlocked }
//! #
//! #       TurnKey {
//! #           Locked => Unlocked
//! #           Unlocked => Locked
//! #       }
//! #
//! #       Break {
//! #           Locked, Unlocked => Broken
//! #       }
//! #   }
//! # }
//! #
//! # fn main() {
//! # use Lock::*;
//! let sm = Machine::new(Broken);
//! # assert_eq!(sm.state(), Broken);
//! # }
//! ```
//!
//! This results in the following error:
//!
//! ```text
//! error[E0277]: the trait bound `Lock::Broken: sm::InitialState` is not satisfied
//!   --> src/lib.rs:417:10
//!    |
//! 21 | let sm = Machine::new(Broken);
//!    |          ^^^^^^^^^^^^ the trait `sm::InitialState` is not implemented for `Lock::Broken`
//!    |
//!    = note: required because of the requirements on the impl of `sm::NewMachine<Lock::Broken>` for `Lock::Machine<Lock::Broken>`
//! ```
//!
//! #### The End 👋
//!
//! And that's it! There's nothing else to it, except a declarative – and easy
//! to read – state machine construction macro, and a type-safe and
//! ownership-focused way of dealing with states and transitions, without any
//! runtime overhead.
//!
//! **Go forth and transition!**

#![no_std]
#![forbid(
    future_incompatible,
    macro_use_extern_crate,
    missing_copy_implementations,
    missing_debug_implementations,
    missing_docs,
    nonstandard_style,
    rust_2018_compatibility,
    single_use_lifetimes,
    trivial_casts,
    trivial_numeric_casts,
    unsafe_code,
    variant_size_differences,
)]
#![warn(
    non_snake_case,
    rust_2018_idioms,
    unused_import_braces,
    unused_lifetimes,
    unused_qualifications,
    unused_results,
    unused,
)]
#![feature(tool_lints)]
#![deny(clippy::all)]

use core::fmt;

#[cfg(feature = "macro")]
extern crate sm_macro;
#[cfg(feature = "macro")]
pub use sm_macro::sm;

/// State is a custom [marker trait][m] that allows [unit-like structs][u] to be
/// used as states in a state machine.
///
/// If you are using the `sm!` macro, then there is no need to interact with
/// this trait.
///
/// [m]: https://doc.rust-lang.org/std/marker/index.html
/// [u]: https://doc.rust-lang.org/book/second-edition/ch05-01-defining-structs.html#unit-like-structs-without-any-fields
pub trait State: fmt::Debug + Eq + Clone {}

/// InitialState is a custom [marker trait][m] that allows a state to be used as
/// the initial state in a state machine. This trait is a superset of the
/// `State` trait.
///
/// If you are using the `sm!` macro, then there is no need to interact with
/// this trait.
///
/// [m]: https://doc.rust-lang.org/std/marker/index.html
pub trait InitialState: State {}

/// Event is a custom [marker trait][m] that allows [unit-like structs][u] to be
/// used as states in a state machine.
///
/// If you are using the `sm!` macro, then there is no need to interact with
/// this trait.
///
/// [m]: https://doc.rust-lang.org/std/marker/index.html
/// [u]: https://doc.rust-lang.org/book/second-edition/ch05-01-defining-structs.html#unit-like-structs-without-any-fields
pub trait Event: fmt::Debug + Eq + Clone {}

/// Machine provides the method required to query a state machine for its
/// current state.
///
/// If you are using the `sm!` macro, then there is no need to interact with
/// this trait.
pub trait Machine: fmt::Debug + Eq {
    /// State represents the current (static) state of the state machine.
    type State: State;

    /// Event represents the (optional) event that resulted in the current state
    /// of the machine.
    type Event: Event;

    /// state allows you to query the current state of the state machine.
    fn state(&self) -> Self::State;

    /// trigger allows you to query the event that triggered the current state
    /// of the machine.
    ///
    /// This returns an `Option`, which is `None` if the machine is in its
    /// initial state, caused by initialisation, not by an even-based
    /// transition.
    fn trigger(&self) -> Option<Self::Event>;
}

/// Initializer defines the `new` method on a machine, that accepts any state
/// marked as `InitialState`, and returns a new machine.
///
/// If you are using the `sm!` macro, then there is no need to interact with
/// this trait.
pub trait Initializer<S: InitialState> {
    /// Machine represents the machine which the implemented initialiser should
    /// return.
    type Machine: Machine<State = S, Event = NoneEvent>;

    /// new initialises a new machine, based on the provided `InitialState` as
    /// input.
    fn new(state: S) -> Self::Machine;
}

/// Transition provides the method required to transition from one state to
/// another.
///
/// If you are using the `sm!` macro, then there is no need to interact with
/// this trait.
pub trait Transition<E: Event>: fmt::Debug {
    /// Machine represents the machine on which the implemented transformation
    /// should execute.
    type Machine: Machine;

    /// transition consumes the state machine and returns a new machine in the
    /// correct state, based on the passed in event.
    fn transition(self, event: E) -> Self::Machine;
}

/// AsEnum provides the method to convert a state machine instance to an enum
/// type.
///
/// If you are using the `sm!` macro, then there is no need to interact with
/// this trait.
pub trait AsEnum: fmt::Debug {
    /// Enum is an enum that represents the current state machine as an enum
    /// variant.
    type Enum;

    /// as_enum consumes the state machine and returns a new enum variant that
    /// represents the consumed state machine.
    fn as_enum(self) -> Self::Enum;
}

/// NoneEvent is a semi-private event struct that is used to allow the
/// `Initializer` trait implementations to provide a simple API to initialise a
/// new machine.
///
/// Using this struct, the following works:
///
/// ```rust,ignore
/// let sm = TurnStile::new(Locked); // => TurnStile<Locked, None>
/// ```
///
/// Otherwise, we'd need to provide type annotations (using any available
/// events) for every machine invocation:
///
/// ```rust,ignore
/// let sm: TurnStile<Locked, Push> = TurnStile::new(Locked); // => TurnStile<Locked, None>
/// ```
///
/// In practice, you will never deal with this struct, as it's used as a
/// concrete type that is swapped for the `None` option at compile time.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct NoneEvent;
impl Event for NoneEvent {}